Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Agric Food Chem ; 72(14): 7596-7606, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557058

RESUMO

The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Lactoferrina , Dieta , Prebióticos
2.
Antibiotics (Basel) ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534663

RESUMO

Antimicrobial peptides (AMPs) are antibiotic candidates; however, their instability and protease susceptibility limit clinical applications. In this study, the polylactic acid-glycolic acid (PLGA)-polyvinyl alcohol (PVA) drug delivery system was screened by orthogonal design using the double emulsion-solvent evaporation method. NZ2114 nanoparticles (NZ2114-NPs) displayed favorable physicochemical properties with a particle size of 178.11 ± 5.23 nm, polydispersity index (PDI) of 0.108 ± 0.10, ζ potential of 4.78 ± 0.67 mV, actual drug-loading rate of 4.07 ± 0.37%, encapsulation rate of 81.46 ± 7.42% and cumulative release rate of 67.75% (120 h) in PBS. The results showed that PLGA encapsulation increased HaCaT cell viability by 20%, peptide retention in 50% serum by 24.12%, and trypsin tolerance by 4.24-fold. Meanwhile, in vitro antimicrobial assays showed that NZ2114-NPs had high inhibitory activity against Staphylococcus epidermidis (S. epidermidis) (4-8 µg/mL). Colony counting and confocal laser scanning microscopy (CLSM) confirmed that NZ2114-NPs were effective in reducing the biofilm thickness and bacterial population of S. epidermidis G4 with a 99% bactericidal rate of persister bacteria, which was significantly better than that of free NZ2114. In conclusion, the results demonstrated that PLGA nanoparticles can be used as a reliable NZ2114 delivery system for the treatment of biofilm infections caused by S. epidermidis.

3.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543066

RESUMO

Staphylococcus pseudintermedius (S. pseudintermedius) is the main pathogen causing pyoderma of canines. With the emergence of drug-resistant bacteria, traditional antibiotic treatments are limited. As a potential antibacterial agent, NZ2114 was effective against S. pseudintermedius, including drug-resistant strains. Its bactericidal efficacy was superior to mupiroxacin, ofloxacin and lincomycin. To facilitate the transcutaneous delivery of NZ2114 for the treatment of superficial pyoderma, chemical permeation enhancers were added since water-soluble NZ2114 does not easily penetrate the skin lipid layer. Two different NZ2114 sprays were prepared by combining 1% Azone + 10% propylene glycol (PG) or 5% N-methylpyrrolidone (NMP) + 10% PG with NZ2114 after screening. The cumulative permeability of NZ2114 sprays were 244.149 and 405.245 µg/cm2 at 24 h with an in vitro percutaneous assay of mice skin, which showed a 244% and 405% increase in skin permeability than NZ2114, respectively. In addition, the efficacy of NZ2114 sprays in reducing skin bacteria colonisation was demonstrated in a mouse model of superficial pyoderma (24 mice, 3 mice/group) induced by S. pseudintermedius, and the 5% NMP + 10% PG + NZ2114 group had the best therapeutic effect compared to the other groups. This preparation did not cause any skin irritation, laying the foundation for the development of an effective and non-toxic topical product.

4.
Appl Microbiol Biotechnol ; 108(1): 260, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472422

RESUMO

Staphylococcus aureus is associated with dairy mastitis, which causes serious economic losses to dairy farming industry. Antibacterial peptide NZX showed good antibacterial activity against S. aureus. This study aimed to evaluate pharmacokinetics and pharmacodynamics of NZX against S. aureus-induced mouse mastitis. NZX exhibited potent in vitro antibacterial activity against the test S. aureus strains (minimal inhibitory concentration (MIC): 0.23-0.46 µM), low mutant prevention concentration (MPC: 1.18-3.68 µM), and a long post antibiotic effect (PAE: 2.20-8.84 h), which was superior to those of lincomycin and ceftiofur. Antibacterial mechanisms showed that NZX could penetrate the cell membrane, resulting in obvious cell membrane perforation and morphological changes, and bind to intracellular DNA. Furthermore, NZX had a good stability in milk environment (retention rate: 85.36%, 24 h) than that in mammary homogenate (47.90%, 24 h). In mouse mastitis model, NZX (25-400 µg/gland) could significantly reduce the bacterial load of mammary tissue in a dose-dependent manner. In addition, NZX (100 µg/gland) could relieve the inflammatory symptoms of mammary tissue, and significantly decreased its pathological scores. The concentration-time curve of NZX (100 µg/gland) in the mammary tissue was plotted and the corresponding pharmacokinetic parameters were obtained by non-compartment model calculation. Those parameters of Tmax, T1/2, Cmax and AUC were 0.5 h, 35.11 h, 32.49 µg/g and 391 µg·h/g, respectively. Therefore, these results suggest that NZX could act as a promising candidate for treating dairy mastitis disease caused by S. aureus. KEY POINTS: • NZX could kill S. aureus by dual mechanism involved in membrane and DNA disruption • NZX could relieve S. aureus-induced mouse mastitis • Pharmacokinetic parameters of NZX in mouse mammary gland were obtained.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Feminino , Camundongos , Animais , Bovinos , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Modelos Animais de Doenças , Peptídeos Catiônicos Antimicrobianos/farmacologia , Mastite Bovina/microbiologia , DNA/metabolismo
5.
Appl Microbiol Biotechnol ; 108(1): 111, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229298

RESUMO

The low activity and yield of antimicrobial peptides (AMPs) are pressing problems. The improvement of activity and yield through modification and heterologous expression, a potential way to solve the problem, is a research hot-pot. In this work, a new plectasin-derived variant L-type AP138 (AP138L-arg26) was constructed for the study of recombination expression and druggablity. As a result, the total protein concentration of AP138L-arg26 was 3.1 mg/mL in Pichia pastoris X-33 supernatant after 5 days of induction expression in a 5-L fermenter. The recombinant peptide AP138L-arg26 has potential antibacterial activity against selected standard and clinical Gram-positive bacteria (G+, minimum inhibitory concentration (MIC) 2-16 µg/mL) and high stability under different conditions (temperature, pH, ion concentration) and 2 × MIC of AP138L-arg26 could rapidly kill Staphylococcus aureus (S. aureus) (> 99.99%) within 1.5 h. It showed a high safety in vivo and in vivo and a long post-antibiotic effect (PAE, 1.91 h) compared with vancomycin (1.2 h). Furthermore, the bactericidal mechanism was revealed from two dimensions related to its disruption of the cell membrane resulting in intracellular potassium leakage (2.5-fold higher than control), and an increase in intracellular adenosine triphosphate (ATP), and reactive oxygen species (ROS), the decrease of lactate dehydrogenase (LDH) and further intervening metabolism in S. aureus. These results indicate that AP138L-arg26 as a new peptide candidate could be used for more in-depth development in the future. KEY POINTS: • The AP138L-arg26 was expressed in the P. pastoris expression system with high yield • The AP138 L-arg26 showed high stability and safety in vitro and in vivo • The AP138L-arg26 killed S. aureus by affecting cell membranes and metabolism.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Peptídeos Antimicrobianos , Pichia/genética , Pichia/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/genética
6.
Chemosphere ; 352: 141302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286309

RESUMO

Perfluorooctane sulfonate (PFOS) is a persistent, anionic and ubiquitous contaminant that undergoes long-range transport within the environment. Its behavior has attracted wide-range academic and regulatory attention. In this article, a mass balance model was employed to simulate PFOS concentrations in the mainstream of Haihe River water system, encompassing sluices and artificial rivers. The dynamic simulation of PFOS concentrations in both sediment and freshwater took into account fluctuations in PFOS emissions, water levels and water discharge. Furthermore, the study delved into exploring the impacts of sluices and artificial rivers on the behavior of PFOS. The simulated concentrations of PFOS in steady state agreed with the measured concentrations in surveys carried out in Nov. 2019, July 2020, Oct. 2020, and June 2021. Every year, approximately 24 kg PFOS was discharged into the Bohai Sea with Chaobai New River being the largest contributor for 44 %. Moreover, the transport of PFOS in the original rivers is likely to be restricted by sluices and replaced by artificial rivers. Monte Carlo analysis showed that model predictions of PFOS concentrations in sediment were subject to greater uncertainty than those in freshwater as the former is impacted by more parameters, such as density of sediment. This study provides a scientific basis for the local government to manage and control PFOS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Rios , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Fluorocarbonos/análise , Água/análise , Ácidos Alcanossulfônicos/análise
7.
Commun Biol ; 6(1): 1170, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973936

RESUMO

Pathogenic Escherichia coli is one of the most common causes of diarrhea diseases and its characteristic component of the outer membrane-lipopolysaccharide (LPS) is a major inducer of sepsis. Few drugs have been proven to kill bacteria and simultaneously neutralize LPS toxicity. Here, the chimeric peptides-R7, A7 and G7 were generated by connecting LBP14 (LPS-targeting domain) with L7 (killing domain) via different linkers to improve antibacterial and anti-inflammatory activities. Compared to parent LBP14-RKRR and L7, the antibacterial activity of R7 with a cleavable "RKRR" linker and the "LBP14-RKRR + L7" cocktail against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus was increased by 2 ~ 4-fold. Both A7 and G7 with non-cleavable linkers almost lost antibacterial activity. The ability of R7 to neutralize LPS was markedly higher than that of LBP14-RKRR and L7. In vivo, R7 could be cleaved by furin in a time-dependent manner, and release L7 and LBP14-RKRR in serum. In vivo, R7 can enhance mouse survival more effectively than L7 and alleviate lung injuries by selective inhibition of the NF-κB signaling pathways and promoting higher IAP activity. It suggests that R7 may be promising dual-function candidates as antibacterial and anti-endotoxin agents.


Assuntos
Escherichia coli , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/farmacologia , Bactérias/metabolismo
8.
Antibiotics (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627703

RESUMO

Although antimicrobial peptides (AMPs) have highly desirable intrinsic characteristics in their commercial product development as new antimicrobials, the limitations of AMPs from experimental to scale development include the low oral bioavailability, and high production costs due to inadequate in vitro/in vivo gene expression- and low scale. Plectasin has good bactericidal activity against Staphylococcus and Streptococcus, and the selective bactericidal activity greatly reduces the damage to the micro-ecosystem when applied in vivo. However, its expression level was relatively low (748.63 mg/L). In view of these situations, this study will optimize and modify the structure of Plectasin, hoping to obtain candidates with high expression, no/low toxicity, and maintain desirable antibacterial activity. Through sequence alignment, Plectasin was used as a template to introduce the degenerate bases, and the screening library was constructed. After three different levels of screening, the candidate sequence PN7 was obtained, and its total protein yield in the supernatant was 5.53 g/L, with the highest value so far for the variants or constructs from the same ancestor source. PN7 had strong activity against several species of Gram-positive bacteria (MIC value range 1~16 µg/mL). It was relatively stable in various conditions in vitro; in addition, the peptide showed no toxicity to mice for 1 week after intraperitoneal injection. Meanwhile, PN7 kills Staphylococcus aureus ATCC 43300 with a mode of a quicker (>99% S. aureus was killed within 2 h, whereas vancomycin at 2× MIC was 8 h.) and longer PAE period. The findings indicate that PN7 may be a novel promising antimicrobial agent, and this study also provides a model or an example for the design, modification, or reconstruction of novel AMPs and their derivatives.

9.
J Dairy Sci ; 106(11): 7329-7335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641347

RESUMO

Lactoferrin is an iron-binding glycoprotein of the transferrin family that is found in most bodily fluids of mammals and has a variety of biological and beneficial functions, with great importance in health enhancement as a supplement for humans and other animals. More than 300 t of lactoferrin were produced in 2021, and this number is expected to grow yearly by 10% to 12%, to over 580 t in 2030. With new and important functions of lactoferrin being revealed and studied, focus on its industrial production and application is increasing accordingly. However, lactoferrin is mainly sourced from cheese whey or skim milk by cation-exchange column chromatography, which is a costly and low-quality method. A potential solution for lactoferrin global supply chain construction is proposed in this article as a complement to traditional routes of purification from whey or skim milk. The large-scale production of lactoferrin, mainly by recombinant yeast, mammal, and grain systems, as well as the market niche and product design, are discussed.

10.
Antibiotics (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107149

RESUMO

Pichia pastoris is the widely used expression system for producing recombinant secretory proteins. It is known that Kex2 protease plays a vital role in the process of protein secretion, in which the P1' site affects its cleavage efficiency. To enhance the expression level of fungal defensin-derived peptide NZ2114, this work attempts to optimize the P1' site of Kex2 by replacing it with 20 amino acids in turn. The results showed that when the amino acid of the P1' site was changed to Phe (F), the yield of target peptide significantly increased from 2.39 g/L to 4.81 g/L. Additionally, the novel peptide F-NZ2114 (short for FNZ) showed strong antimicrobial activity against Gram-positive (G+) bacteria, especially for Staphylococcus aureus and Streptococcus agalactiae (MIC: 4-8 µg/mL). The FNZ was very stable and retained high activity in various conditions; in addition, a low cytotoxicity and no hemolysis were observed even at a high concentration of 128 µg/mL, and a longer postantibiotic effect was reached. The above results indicate that this engineering strategy provided a feasible optimization scheme for enhancing the expression level and druggability of this antimicrobial peptide from fungal defensin and other similar targets by this updated recombinant yeast.

11.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834553

RESUMO

With the accelerating growth of antimicrobial resistance (AMR), there is an urgent need for new antimicrobial agents with low or no AMR. Antimicrobial peptides (AMPs) have been extensively studied as alternatives to antibiotics (ATAs). Coupled with the new generation of high-throughput technology for AMP mining, the number of derivatives has increased dramatically, but manual running is time-consuming and laborious. Therefore, it is necessary to establish databases that combine computer algorithms to summarize, analyze, and design new AMPs. A number of AMP databases have already been established, such as the Antimicrobial Peptides Database (APD), the Collection of Antimicrobial Peptides (CAMP), the Database of Antimicrobial Activity and Structure of Peptides (DBAASP), and the Database of Antimicrobial Peptides (dbAMPs). These four AMP databases are comprehensive and are widely used. This review aims to cover the construction, evolution, characteristic function, prediction, and design of these four AMP databases. It also offers ideas for the improvement and application of these databases based on merging the various advantages of these four peptide libraries. This review promotes research and development into new AMPs and lays their foundation in the fields of druggability and clinical precision treatment.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Anti-Infecciosos/química , Peptídeos/química , Antibacterianos/química , Algoritmos
12.
Biometals ; 36(3): 587-601, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36342570

RESUMO

Weaning is a crucial period in the pig's life cycle, which is frequently followed by gastrointestinal (GI) infections, diarrhea and even death. This study focused on the impact of bovine lactoferrin (bLF) supplementation on the intestinal health of weaning piglets. Weaning piglets (Duroc × Landrace × Yorkshire, 23 days) were randomly allocated into four groups, which included negative control group (CON): basic diet; positive control group (ANT): basic diet + 20 mg/kg flavomycin + 100 mg/kg aureomycin; treatment group bLF-A: basic diet + 1 g/kg bLF; treatment group bLF-B: basic diet + 3 g/kg bLF. The result showed that dietary supplementation of bLF can improve growth performance and reduce diarrhea, which exhibits dose-dependency (P < 0.05). Compared with CON group, supplementation with bLF significantly improved immunity, and increased villus height and ratio of villus height/crypt depth at the small intestinal mucosa (P < 0.05). The mRNA expression of claudin-1, occludin and ZO-1 was greatly increased in the ileum of bLF group on days 7 and 14 (P < 0.05). Furthermore, the supplementation of bLF increased the abundance of Lactobacillus and Bifidobacterium and decreased the abundance of Escherichia coli in the cecum on day 7 (P < 0.05). The dietary supplementation of bLF enhanced the growth performance, reduced diarrhea rate in weaning piglets by improving intestinal immunity, morphology and barrier function, balancing intestinal microbiota. And bLF can be a promising feed additive in relieving stress situation of weaning piglets.


Assuntos
Suplementos Nutricionais , Lactoferrina , Estresse Psicológico , Suínos , Desmame , Animais , Diarreia/prevenção & controle , Diarreia/metabolismo , Dieta/veterinária , Escherichia coli/metabolismo , Imunidade , Mucosa Intestinal/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Estresse Psicológico/prevenção & controle
13.
Sci Total Environ ; 858(Pt 1): 159693, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302407

RESUMO

Frequent exchange of surface water and groundwater occurs in arid/semi-arid areas due to high evaporation and intensive irrigation activities, affecting the migration and transformation of per- and polyfluoroalkyl substances (PFASs) and threatening drinking water safety. This study analyzed legacy PFASs and potential precursors in surface water, groundwater, soil, and aquifer solid samples collected from a typical arid area, the Hetao Irrigation District of Northern China, to explore PFASs distribution and transformation between surface and ground. Total PFASs (ΣPFASs) in surface water was 29-232 ng/L, higher than 2-77 ng/L in groundwater. ΣPFASs in soil were 0.29-0.59 ng/g, higher than 0.09-0.27 in the aquifer solids. Regarding horizontal distribution, the concentration of PFASs in groundwater increased in downtowns and the areas recharged with lake water. In terms of vertical distribution, ΣPFASs decreased with the increase of depth, and more PFASs adsorbed on clay particles in the aquifer. The total oxidable precursor analysis showed that 8:2 FT and 4:2 FT were the dominant precursors of PFASs, resulting in an increment of 0.1-4 ng/L PFASs. Hydrogen and oxygen stable isotope compositions suggest similar sources between surface water and groundwater in the study area, while principal component analysis and Bayesian inference also indicate that surface water is an important source of groundwater PFASs. The annual infiltration PFASs to groundwater from Ulansuhai was estimated by the water balance approach to be 9.39 kg. Results highlight the influence of agricultural irrigation activities and lake infiltration on groundwater PFASs in the arid region.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Teorema de Bayes , Poluentes Químicos da Água/análise , Solo , Lagos , Água/análise , China , Monitoramento Ambiental/métodos
14.
Front Microbiol ; 14: 1304825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188573

RESUMO

Non-computational classical evolution analysis of plectasin and its functional relatives can especially contribute tool value during access to meet requirements for their better druggability in clinical use. Staphylococcus aureus is a zoonotic pathogen that can infect the skin, blood, and other tissues of humans and animals. The impact of pathogens on humans is exacerbated by the crisis of drug resistance caused by the misuse of antibiotics. In this study, we analyzed the evolution of anti-Staphylococcus target functional sequences, designed a series of plectasin derivatives by truncation, and recombinantly expressed them in Pichia pastoris X-33, from which the best recombinant Ple-AB was selected for the druggability study. The amount of total protein reached 2.9 g/L following 120 h of high-density expression in a 5-L fermenter. Ple-AB was found to have good bactericidal activity against gram-positive bacteria, with minimum inhibitory concentration (MIC) values ranging between 2 and 16 µg/mL. It showed good stability and maintained its bactericidal activity during high temperatures, strong acid and alkali environments. Notably, Ple-AB exhibited better druggability, including excellent trypsin resistance, and still possessed approximately 50% of its initial activity following exposure to simulated intestinal fluids for 1 h. In vitro safety testing of Ple-AB revealed low hemolytic activity against mouse erythrocytes and cytotoxicity against murine-derived macrophages. This study successfully realized the high expression of a new antimicrobial peptide (AMP), Ple-AB, in P. pastoris and the establishment of its oral administration as an additive form with high trypsin resistance; the study also revealed its antibacterial properties, indicating that truncation design is a valuable tool for improving druggability and that the candidate Ple-AB may be a novel promising antimicrobial agent.

15.
Mar Drugs ; 22(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276646

RESUMO

The marine peptide, American oyster defensin (AOD), is derived from Crassostrea virginica and exhibits a potent bactericidal effect. However, recombinant preparation has not been achieved due to the high charge and hydrophobicity. Although the traditional fusion tags such as Trx and SUMO shield the effects of target peptides on the host, their large molecular weight (12-20 kDa) leads to the yields lower than 20% of the fusion protein. In this study, a short and acidic fusion tag was employed with a compact structure of only 1 kDa. Following 72 h of induction in a 5 L fermenter, the supernatant exhibited a total protein concentration of 587 mg/L. The recombinant AOD was subsequently purified through affinity chromatography and enterokinase cleavage, resulting in the final yield of 216 mg/L and a purity exceeding 93%. The minimum inhibitory concentrations (MICs) of AOD against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus galactis ranged from 4 to 8 µg/mL. Moreover, time-killing curves indicated that AOD achieved a bactericidal rate of 99.9% against the clinical strain S. epidermidis G-81 within 0.5 h at concentrations of 2× and 4× MIC. Additionally, the activity of AOD was unchanged after treatment with artificial gastric fluid and intestinal fluid for 4 h. Biocompatibility testing demonstrated that AOD, at a concentration of 128 µg/mL, exhibited a hemolysis rate of less than 0.5% and a cell survival rate of over 83%. Furthermore, AOD's in vivo therapeutic efficacy against mouse subcutaneous abscess revealed its capability to restrain bacterial proliferation and reduce bacterial load, surpassing that of antibiotic lincomycin. These findings indicate AOD's potential for clinical usage.


Assuntos
Crassostrea , Animais , Camundongos , Crassostrea/metabolismo , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas Recombinantes/farmacologia , Defensinas/farmacologia , Testes de Sensibilidade Microbiana
16.
Front Microbiol ; 13: 1010148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187987

RESUMO

Bovine mastitis caused by Streptococcus dysgalactiae (S. dysgalactiae) is usually treated with antibiotics, which may potentially increase drug resistance as the abuse. NZ2114, a variant of fungal defensin plectasin, displayed a potent antibacterial activity against S. dysgalactiae. The inhibition/eradication effect of the antimicrobial peptide NZ2114 on the early/mature biofilm of S. dysgalactiae CVCC 3938 was evaluated, as well as the elimination of bacteria in mature biofilms. In this study, NZ2114 displayed potent antibacterial activity against S. dysgalactiae CVCC 3938 and three clinical isolated S. dysgalactiae strains (0.11-0.45 µM). The early biofilm inhibition of S. dysgalactiae CVCC 3938 was 55.5-85.9% after treatment with NZ2114 at concentrations of 1-16 × MIC, which was better than that of vancomycin at the same concentration. The mature biofilm eradication rate was up to 92.7-97.6% with the increasing concentration (2-16 × MIC) of NZ2114, and the eradication rate did not change significantly with further increase of NZ2114 concentration, while the biofilm eradication rate of vancomycin-treated group at the same concentration remained at 92.5%. NZ2114 reduced the number of persister bacteria in biofilm. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) further demonstrated that NZ2114 could effectively reduce the biofilm thickness and bacterial number of S. dysgalactiae CVCC 3938. In vivo therapeutic effect of NZ2114 on murine mastitis model showed that NZ2114 was better than vancomycin in alleviating mammary gland inflammation by regulating cytokines production, inhibiting bacterial proliferation, and reducing the number of mammary gland bacteria. These data suggested that NZ2114 is a potential peptide candidate for the treatment of mastitis.

17.
Sci Total Environ ; 851(Pt 1): 158179, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988592

RESUMO

Pharmaceuticals and personal care products (PPCPs) have attracted widespread attention owing to their extensive use and potential adverse effects on human and ecosystem health. There is a lack of information regarding the occurrence and environmental fate of PPCPs in large agricultural irrigation areas in China. In this study, we conducted a comprehensive survey on 30 PPCPs in water from Hetao Irrigation District, one of the three largest irrigation areas in China. The ΣPPCP-concentrations ranged 82.13-1409.24 ng/L in August and 40.53-887.20 ng/L in November, with caffeine (CAF), norfloxacin (NOR), erythromycin (ERY), sulfamethoxazole (SMX) and ofloxacin (OFL) being the predominant compositions. Spatially, the average ΣPPCP concentrations increased from irrigation to drainage water, and then decreased in Wuliangsuhai Lake. Less PPCP mass loading (55.05 kg/y) migrated from Wuliangsuhai Lake to Yellow River than that from the Yellow River to Hetao Irrigation District (425.88 kg/y), indicating that Wuliangsuhai Lake plays an important role in improving water quality. An ecological risk assessment showed that it is worthwhile to consider the presence of CAF, ERY, NOR, and OFL in natural surface water and to control their potential risks.


Assuntos
Cosméticos , Poluentes Químicos da Água , Cafeína , China , Cosméticos/análise , Ecossistema , Monitoramento Ambiental , Eritromicina , Humanos , Norfloxacino , Ofloxacino , Preparações Farmacêuticas , Medição de Risco , Sulfametoxazol , Poluentes Químicos da Água/análise
18.
Front Microbiol ; 13: 865774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722282

RESUMO

Staphylococcus aureus (S. aureus) is one of the most common pathogenic bacteria responsible for causing a life-threatening peritonitis disease. NZX, as a variant of fungal defensin plectasin, displayed potent antibacterial activity against S. aureus. In this study, the antibacterial and resistance characteristics, pharmacokinetics, and pharmacodynamics of NZX against the S. aureus E48 and S. aureus E48-induced mouse peritonitis model were studied, respectively. NZX exhibited a more rapid killing activity to S. aureus (minimal inhibitory concentration, 1 µg/ml) compared with linezolid, ampicillin and daptomycin, and serial passaging of S. aureus E48 for 30 days at 1/2 × MIC, NZX had a lower risk of resistance compared with ampicillin and daptomycin. Also, it displayed a high biocompatibility and tolerance to physiological salt, serum environment, and phagolysosome proteinase environment, except for acid environment in phagolysosome. The murine serum protein-binding rate of NZX was 89.25% measured by ultrafiltration method. Based on the free NZX concentration in serum after tail vein administration, the main pharmacokinetic parameters for T1/2, Cmax, Vd, MRT, and AUC ranged from 0.32 to 0.45 h, 2.85 to 20.55 µg/ml, 1469.10 to 2073.90 ml/kg, 0.32 to 0.56 h, and 1.11 to 8.89 µg.h/ml, respectively. Additionally, the in vivo pharmacodynamics against S. aureus demonstrated that NZX administrated two times by tail vein at 20 mg/kg could rescue all infected mice in the lethal mouse peritonitis model. And NZX treatment (20 mg/kg) significantly reduced CFU counts in the liver, lung, and spleen, especially for intracellular bacteria in the peritoneal fluid, which were similar or superior to those of daptomycin. In vivo efficacies of NZX against total bacteria and intracellular bacteria were significantly correlated with three PK/PD indices of ƒAUC/MIC, ƒCmax/MIC, and ƒT% > MIC analyzed by a sigmoid maximum-effect model. These results showed that NZX may be a potential candidate for treating peritonitis disease caused by intracellular S. aureus.

19.
Appl Microbiol Biotechnol ; 106(9-10): 3639-3656, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35524777

RESUMO

Wound infection caused by Staphylococcus aureus (S. aureus) is a great challenge which has caused significant burden and economic loss to the medical system. NZ2114, a plectasin-derived peptide, is an antibacterial agent for preventing and treating S. aureus infection, especially for methicillin-resistant S. aureus (MRSA) infection. Here, three-dimensional reticulated antimicrobial peptide (AMP) NZ2114 hydrogels were developed based on hydroxypropyl cellulose (HPC) and sodium alginate (SA); they displayed sustained and stable release properties (97.88 ± 1.79% and 91.1 ± 10.52% release rate in 72 h, respectively) and good short-term cytocompatibility and hemocompatibility. But the HPC-NZ2114 hydrogel had a smaller pore size (diameter 0.832 ± 0.420 µm vs. 3.912 ± 2.881 µm) and better mechanical properties than that of the SA-NZ2114 hydrogel. HPC/SA-NZ2114 hydrogels possess efficient antimicrobial activity in vitro and in vivo. In a full-thickness skin defect model, the wound closure of the 1.024 mg/g HPC-NZ2114 hydrogel group was superior to those of the SA-NZ2114 hydrogel and antibiotic groups on day 7. The HPC-NZ2114 hydrogel accelerated wound healing by reducing inflammation and promoting the production of vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and angiogenesis (CD31) through histological and immunohistochemistry evaluation. These data indicated that the HPC-NZ2114 hydrogel is an excellent candidate for S. aureus infection wound dressing. KEY POINTS: •NZ2114 hydrogels showed potential in vitro bactericidal activity against S. aureus •NZ2114 hydrogels could release continuously for 72 h and had good biocompatibility •NZ2114 hydrogels could effectively promote S. aureus-infected wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Alginatos , Antibacterianos/farmacologia , Humanos , Hidrogéis/farmacologia , Peptídeos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
20.
Microorganisms ; 10(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630326

RESUMO

(1) Background: Based on the hazard of Streptococcus agalactiae to human and animal health and the increasing drug resistance, it is urgent to develop new antimicrobial agents with high bactericidal activity and low drug resistance against S. agalactiae. This study aims to investigate in vitro pharmacodynamics and bactericidal mechanism of fungal defensin-derived peptides NZX and P2 against S. agalactiae. (2) Methods: Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined by broth dilution method and AGAR plate dilution method. Cell membrane integrity was determined by flow cytometer. Cell morphological changes were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). (3) Results: MIC values (NZX: 0.11 µM, P2: 0.91 µM) and MPC (NZX: 1.82 µM) showed their higher antibacterial activity and stronger inhibition ability of drug resistance mutation. The bactericidal mechanism was elucidated that P2 caused S. agalactiae ACCC 61733 cells to deform, bound to the cell wall, and perturbed cell membrane, resulting in K+ leakage, membrane hyperpolarization, ATP release, and reduced cell contents. Compared with P2, NZX focuses on the cell wall, and it bound to the cell wall causing cells boundary disappearance. (4) Conclusion: NZX and P2 are promising antimicrobial agents for streptococcicosis treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...